You are here

Importance of statistical power in research design

마리샤 폰세카 | 2013년10월16일 | 조회수 67,118

In statistics, “power” refers to the ability of your study to identify effects of substantial interest. Basically, at the time of designing your study, you need to consider four essential factors:

1.      Sample size, i.e., the number of units (e.g., patients), usually represented as “N.”

2.      Size of the effect that you are interested in (usually, if you are looking for a large effect, you don’t need as big a sample as you would if you were looking for a small effect)

3.      Alpha level: This is your significance threshold (it can be .001, .05, or .1). If your p values are at or above this level, you say that your result is not statistically significant.

4.      Power: This is a value representing the likelihood of you finding an effect.

How do you determine the power of your study? The above four parameters are interrelated, so if you have the values for three of them, you can calculate the value of the fourth. But usually, the alpha level is fixed (you generally have to choose between .001, .05, and .1) and by reviewing the literature, you will know roughly how large or small your effect can possibly be (effect size). So if you want your study to have good power, you will need to focus on sample size.

Many prestigious journals like Nature require you to justify your sample size, so as to show that you have enough power. Nature also offers specific guidelines about what kind of tests you should conduct when your sample size is small. Others, like the British Journal of Surgery, want power calculations to be clearly stated in the manuscript. Still others, like Molecular Genetics and Metabolism, clearly state that “[s] ubmitted manuscripts without a power calculation will be rejected and returned to authors without review.” And it’s not just medical and life science journals that are strict about statistical power—the American Psychological Association also strongly recommends reporting a power analysis in the methods section of psychology papers, in its Reporting Standards for Research in Psychology.

It also helps to show your power calculations when applying for a grant, so that reviewers can gauge the robustness of your study.

You’ll notice that there has been no mention of methodology in the above explanation. This is because the power of a study is independent of the methodology. You can conduct the most rigorous tests, such as randomized clinical trials, even if your study has low statistical power (e.g., your sample size is too small for you to appropriately detect the effects you have chosen to study). “Underpowered studies” do not have sufficient power for the observed effects to be considered reliable and reproducible.

Unfortunately, it’s very difficult to fix power after you have conducted your research. It’s therefore important to consult a statistician before you start data collection, to check whether your study design has enough power. 

스크랩하기

해당 기사를 스크랩해보세요!

지식은 모두에게 함께 공유되어야 한다는 것이 에디티지 인사이트의 이념입니다. 해당 사이트에서 제공되는 모든 기사는 Creative Commons license로 재포스팅 및 스크랩이 가능합니다. 아래의 가이드라인만 유념해주신다면 언제든지 무료로 에디티지 학술 전문가의 지식을 가져가실 수 있습니다!


  • 주의 : 에디티지 학술 전문가들은 해당 콘텐츠를 만들기 위해 많은 시간과 노력을 쏟고 있습니다. 기사를 스크랩 및 재포스팅 하실 때는 명확한 출처를 남겨주시기 바랍니다.
  • 이미지 재사용: 이미지를 원본이 아닌 편집 재사용하실 때는 에디티지 인사이트의 허가가 필요합니다.

코드를 복사하셔서 기사 공유를 원하시는 사이트에 적용하시면 에디티지 인사이트 기사를 가장 쉬운 방법으로 공유하실 수 있습니다.
 
Please copy the above code and embed it onto your website to republish.

Comments